Skip to main content

Random Forest Classification

Random Forest is a popular ensemble machine learning algorithm used for classification tasks. It is based on the concept of decision trees and combines the predictions of multiple decision trees to make a final classification decision. Random Forest is known for its robustness, accuracy, and ability to handle high-dimensional data.

Method: POST Authorization: API Key
https://engine.raccoon-ai.io/api/v1/ml/classification/randomforest

Authorization

TypeKeyValue
API KeyX-Api-Keyrae_######

Request Body

SectionKeyData TypeRequiredDescription
traindatajsontrueData that use to train the model
featureslisttrueInput features (X)
targetslisttrueOutput targets (y)
configjsonfalseTrain configurations
predictdatajsontrueData that need to predicted by the trained model
configjsonfalsePredict configurations

Types

{
"train" : {
"data" : <json_data>,
"features": <list>,
"targets" : <list>,
"config" : {
"std_scale": <boolean>,
"encoder" : <"label" | "drop">,
"val_size" : <float>
}
},
"predict": {
"data": <json_data>,
"config": {
"include_inputs": <boolean>,
"round": <int>
}
}
}

Sample

{
"train": {
"data": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7,
"2": 153441.51,
"3": 144372.41,
"4": 142107.34,
"5": 131876.9,
"6": 134615.46,
"7": 130298.13,
"8": 120542.52,
"9": 123334.88
},
"Administration": {
"0": 136897.8,
"1": 151377.59,
"2": 101145.55,
"3": 118671.85,
"4": 91391.77,
"5": 99814.71,
"6": 147198.87,
"7": 145530.06,
"8": 148718.95,
"9": 108679.17
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53,
"2": 407934.54,
"3": 383199.62,
"4": 366168.42,
"5": 362861.36,
"6": 127716.82,
"7": 323876.68,
"8": 311613.29,
"9": 304981.62
},
"State": {
"0": "New York",
"1": "California",
"2": "Florida",
"3": "New York",
"4": "Florida",
"5": "New York",
"6": "California",
"7": "Florida",
"8": "New York",
"9": "California"
},
"Profit": {
"0": 192261.83,
"1": 191792.06,
"2": 191050.39,
"3": 182901.99,
"4": 166187.94,
"5": 156991.12,
"6": 156122.51,
"7": 155752.6,
"8": 152211.77,
"9": 149759.96
}
},
"features": ["R&D Spend", "Administration", "Marketing Spend", "Profit"],
"targets": ["State"],
"config": {
"std_scale": true,
"encoder": "label"
}
},
"predict": {
"data": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7
},
"Administration": {
"0": 136897.8,
"1": 151377.59
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53
},
"Profit": {
"0": 471784.1,
"1": 443898.53
}
},
"config": {
"include_inputs": true,
"round": 2
}
}
}

Reponse Body

KeyData TypeDescription
successbooleanIndicate the success of the request
msgstringMessage indicators
errorstringError information, only set if success is false
resultjsonResult, only set if success is true
scorejsonAccuracy scores of the training and testing phases, only set if success is true
generated_tsfloatGenerated timestamp

Types

{
"success": <boolean>,
"msg": <string>,
"error": <string>,
"result": <json>,
"score": {
"train": <float>,
"test": <float>
},
"generated_ts": <timestamp>
}

Sample

{
"success": true,
"msg": "Model trained and predicted successfully",
"error": null,
"result": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7
},
"Administration": {
"0": 136897.8,
"1": 151377.59
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53
},
"Profit": {
"0": 190209.72,
"1": 186863.18
},
"State": {
"0": "New York",
"1": "California"
}
},
"score": {
"train": 0.942446542689397,
"test": 0.9649618042060305
},
"saved_in": null,
"generated_ts": 1685439220.425382
}